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The biased movement of Brownian particles on a #uctuating two-state periodic potential made
of identical distorted ratchets is studied. The purpose is to investigate how the direction of the
particle movement is related to the asymmetry of the potential. In general, distorting one of the
two linear arms of a regular symmetric ratchet (with equal arm lengths) can create a driving
force for the Brownian particle to execute biased movement. The direction of the induced
biased movement depends on the type of the distortion. It has been found that if one linear arm
is kinked into two linear sub-arms, the direction of the movement can be either positive or
negative depending on the frequency of the #uctuation and the location and the degree of the
kink. In contrast, if one arm of the symmetric ratchet is replaced by a continuous nonlinear
sinusoidal function, the movement is always unidirectional. Thus, for the latter case to
generate the direction reversal phenomenon, the ratchets have to have an additional asym-
metry. We also have found that two potentials with di!erent distorted ratchets can generate
identical #uxes if the distortions are polar symmetric about the mid-point of the arm(s) of the
basic linear two-arm ratchet. The results are useful for designing experimental apparatuses for
the separation of protein particles based on their sizes and charges and the viscosity of the
medium.
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Introduction

A Brownian particle can be made to execute
unidirectional movement in a one-dimensional
periodic potential if the potential is asymmetric
and the interaction between the particle and the
potential "eld is made to #uctuate randomly or
regularly among a number of potential states
(Astumian & Bier, 1994; Prost et al., 1994;
Chauwin et al., 1995; Bier & Astumian, 1996;
Zhou & Chen, 1996; Chen, 1997). The #uctuation
of the interaction can be produced either by
?Author to whom correspondence should be addressed.
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switching the potential between a number of
di!erent potential states or by changing the inter-
action parameter (such as the charges on the
particle, if the potential "eld is electric) on the
Brownian particle through a non-equilibrium
chemical reaction (Zhou & Chen, 1996). This
process could be used to separate charged par-
ticles with a #uctuating electric potential "eld
(Rousselet et al., 1994). Also this process has been
suggested as a possible mechanism for generating
directed movement of biological motors on linear
periodic biopolymers (Astumian & Bier, 1996;
Astumian, 1997; Julicher et al., 1997).

To generate biased Brownian motion with
a #uctuating potential, the potential must possess
( 2001 Academic Press



FIG. 1. (a) The two-state model with regular ratchets.
(b) The regular ratchet is distorted by kinking one arm.
(c) The regular ratchet is distorted by replacing one arm
with a sinusoidal function, <(x)"<

0
[sin(nx/2a)]S.
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some sort of asymmetry. For the two-state sys-
tem in which the potential is switched randomly
(or regularly) between a #at and a non-#at peri-
odic potential state, the potential must be asym-
metric locally* in each period (Astumian & Bier,
1994; Prost et al., 1994; Chauwin et al., 1995; Bier
& Astumian, 1996). On the other hand, if the
potential #uctuates between two or more non-#at
states, then the symmetry can be obtained glo-
bally by shifting the phases of the non-#at poten-
tials (Chen, 1997). In this case, local asymmetry in
each period is not required (Chen, 1997). The
simplest periodic potential is the regular ratchet
for which the potential in each period is shaped
like a continuous sawtooth with two straight
arms [see Fig. 1(a)]. This is called a symmetric or
asymmetric ratchet depending on whether the
arms are of equal or unequal length, respectively.
An &&arm-projection'' asymmetry occurs when the
projections of the two arms onto the horizontal
axis are not equal in length. In the two-state
system with a #at potential state and a regular
ratchet state, the direction of the movement of the
particle is completely determined by the arm-
projection asymmetry, namely, to the right if the
negative sloped arm of the ratchet is the longer
arm and to the left if it is the shorter one. For
example, a positively charged particle in Fig. 1(a)
always moves from left to right, independent of
the frequency of the #uctuation [speci"ed by the
values of k

1
and k

2
in Fig. 1(a)] (Astumian & Bier,

1996; Astumian, 1997; Julicher et al., 1997).
Recently, it has been shown that the direction

of movement in this two-state system can become
frequency-dependent if one of the arms of the
regular ratchet is kinked by allowing a jump in
the potential at one end (Chauwin et al., 1995;
Chen et al., 1999). That is, the direction of the
particle movement in this kinked-potential case
can be reversed by varying the frequency of the
#uctuation (referred to as direction reversal or
DR). It also was found that DR can occur in this
system even when there is arm-projection sym-
metry (Chen et al., 1999). This surprising result
prompted us to wonder whether there exists any
general rule for the generation of DR in this
*Local asymmetry is determined by showing that
the re#ection of the potential about the location of the
maximum is not symmetric.
two-state distorted ratchet system. That is, what
is the necessary condition for this two-state sys-
tem to show DR? Is replacement of one of the
linear arms of the ratchet with a nonlinear one
su$cient to generate DR? In this case, is the
arm-projection asymmetry required?

In this study, these questions were examined
by carrying out numerical calculations on two
special classes of distorted ratchets. Firstly, we
extended our previous study (Chen et al., 1999) to
the case where the location of the kinked point is
not restricted to the end of the arm. That is, the
distortion is now characterized by two asym-
metry parameters (e and d) as shown in Fig. 1(b).
Secondly, we examined the case where the left
arm is replaced by a continuous sine function as
shown in Fig. 1(c). We found that DR can be
obtained in both cases. In the "rst case, DR can
be obtained without the arm-projection asym-
metry. In the second case, DR cannot be ob-
tained if the arm-projection asymmetry is absent.
These results suggest that the system needs at
least two independent asymmetries in order
to generate DR. This is the reason why the
arm-projection asymmetry is required in the
sinusoidal-function case.

In this study, we also found that two distinct
asymmetric ratchets are able to generate identical
particle #uxes if the ratchet shapes obey a special
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&&inversion'' symmetry condition. The results
obtained in this paper should be useful in design-
ing electrophoresis setups for the separation of
particles based on their sizes and charges and on
the viscosity of the medium.

Model and Mathematical Analysis

We consider the movement of a Brownian par-
ticle subjected to a one-dimensional periodic po-
tential, <(x), which can be switched between two
potential states as shown in Fig. 1(a). In state 1,
the potential is constant, and in state 2, it takes
a regular ratchet shape. The rate of #uctuation
between the two potential states is governed by
the rate constants k

1
and k

2
where k

1
is the rate

from state 1 to state 2 and k
2
is the rate from state

2 to state 1. As noted above, biased movement of
the particle occurs only when some sort of asym-
metry exists in the ratchet potential state. In this
study, we consider the case where the left-hand
side of the ratchet is replaced by a kinked piece-
wise linear potential de"ned by the position para-
meter, d, and the degree parameter, e, as shown in
Fig. 1(b) (Case I) or by a nonlinear function
de"ned as < (x)"[sin(nx/2a)]S where the degree
of nonlinearity parameter, S, is a constant be-
tween 0 and 1, as shown in Fig. 1(c) (Case II).

When the potential is #uctuating between two
states i ("1, 2), the probability of "nding an
over-damped Brownian particle in the di!eren-
tial length dx centered at position x at time t is
p
i
(x, t) dx. The probability densities p

i
(x, t)

(i"1, 2) obey the di!usion-reaction equations
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where u
i

(i"1, 2) is the transport #ux of the
particle in potential state i, and the quantities
x, t, <, k

1
, and k

2
have been made dimensionless.

At steady state, Lp
i
/Lt"0 and from eqns (1)}(3),
we have Lu/Lx"0 where u (,u
1
#u

2
) is the

total transport #ux of the system. Note that the
steady state u is a constant, independent of x.
This u is equal to the long time velocity of the
Brownian particle in the system if the steady-
state probabilities satisfy the normalization
condition (Zhou & Chen, 1996; Risken, 1989)
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Substituting eqn (3) into eqns (1) and (2) and
setting the quantities on the left-hand side to
zero, we obtain the di!erential equations for the
probabilities at steady state
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where <@ (x) and <A (x) are the "rst- and second-
order derivatives, respectively, of the potential in
state 2.

For Case I [cf. Fig. 1(b)], the di!erential equa-
tions (5) and (6) in each linear region (i.e.,
0(x(d, d(x(a, a(x(1) have constant
coe$cients. As a result, p

1
(x) and p

2
(x) in these

linear regions each can be expressed analytically
as a linear combination of four linearly indepen-
dent solutions, namely,
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where o
1i

and o
2i

are constants and the r
i
are the

roots of the characteristic equation for (5) and (6):
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where D ' D represents a determinant. Since one
root of eqn (8) is always zero, each of the sums in
eqn (7) contain one constant term.



FIG. 2. Calculated transport #uxes as a function of e at
k
1
"k

2
"k"1 for a"0.5 (a), 0.48 (b), and 0.52 (c) and

several values of d. The meanings of e, a, and d are de"ned in
Fig. 1(b): ( ) d"0.01; ( ) 0.10; ( ) a/2; ( )
a!0.10; ( ) a!0.01.

144 B. YAN E¹ A¸.
From eqn (5), it is easy to show that o
2i

can be
expressed in terms of o

1i
as

o
2i
"[k

1
!r2

i
]o

1i
/k

2
. (9)

Thus, only four constants in eqn (7) are unknown
in each linear region. As a result, there are a total
of 12 unknown constants to be determined [be-
cause there are three smooth regions of < in the
system, see Fig. 1(b)]. At steady state, both p

1
(x)

and p
2
(x) as well as u

1
and u

2
are continuous at

x"0, d, and a. Thus, there are 12 boundary
conditions that could be used for the determina-
tion of the 12 unknowns in eqn (7). However,
these 12 boundary conditions are not indepen-
dent; one of them has to be replaced by the
normalization condition in eqn (4). The evalu-
ation of the constants o

1i
, etc. in eqn (7) involves

the solution of a system of 12 linear algebraic
equations and can be carried out easily using
Mathematica. After obtaining p

1
(x) and p

2
(x),

the velocity of the Brownian particle can be cal-
culated from eqn (3).

For Case II in Fig. 1(c) where the potential in
state 2 is partly nonlinear, the above mathemat-
ical procedure is not applicable. In this case, the
solution of eqns (5) and (6) was obtained approx-
imately using a "nite-di!erence method (Zhou
& Chen, 1996; Chen, 1997).

Results

For the results presented here, <
0

is set to 10,
and the rate constants of switching between the
two potential states are assumed to be equal
(k

1
"k

2
"k), unless otherwise speci"ed. We "rst

discuss the kinked case (I) and then the continu-
ous case (II).

For the kinked case, the asymmetry of the
system is determined by the values of e (the de-
gree of the kink), d (the position of the kink on the
x-axis), and a (the position of the peak of the
original sawtooth that de"nes the arm-projection
asymmetry). We consider three values of a"0.48,
0.5, 0.52 and "ve values of d"0.01, 0.1, a/2,
a!0.1, and a!0.01 and set the value of k to 1.
Fig. 2(a) shows the plots of u as a function of e for
a"0.5 (the case with the arm-projection sym-
metry). Firstly, it is obvious from the plot that
each #ux curve passes through the origin at e"0
and u"0. This is due to the fact that the local
asymmetry of the potential disappears when
e"0 at a"0.5 [see Fig. 1(b)]. Secondly, if
d"a/2"0.25, the #ux u is always positive for
eO0, independent of the sign e (see the solid
curve), that is, the particle always moves to the
right no matter whether the kink is up or down.
On the other hand, if dO0.25, then there is
always a region in e where the #ux is negative (i.e.,
the particle moves to the left). One end of this
negative u region is located at e"0, and the
other end is located at some positive e if d(0.25
and at some negative e if d'0.25. Thus, unless
d is exactly equal to 0.25, the direction of net
movement of the Brownian particle will change
from right to left and back to right again as the
value of e is varied from very negative to very
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positive values (or vice versa). Thirdly, as can be
seen in Fig. 2(a), the #ux curve for d"0.01 is
exactly the mirror image of the #ux curve for
d"a!0.01 with respect to the line e"0. Thus,
in general, we have

u (e, d)"u(!e, a!d). (10)

That is, the potential with an upward kink of e at
d will generate a transport #ux identical to that
generated by the potential with a downward kink
of the same amount at a!d. In the (x, <)-plane
of Fig. 1b, the coordinates of the two kinked
points at d and a!d can be shown to be
(d, e#<

0
d/a) and (a!d, <

0
![e#<

0
d/a]), re-

spectively. It is easy to see that these two points
have polar symmetry about the point
(x, <)"(a/2, <

0
/2). In other words, two periodic

potentials with kinked ratchets such as shown in
Fig. 1b will generate identical #uxes if the kink
points are symmetrical about the point (a/2, <

0
/2)

(the inversion symmetry principle).
The #ux curves calculated for a"0.48 and

0.52 are plotted in Figs. 2(b) and 2(c), respectively.
As shown in the "gures, the common intercepts
at e"0 are not at u"0 in these two cases
because the original regular ratchets have the
arm-projection asymmetry. In general, the curves
in Figs. 2(b) and 2(c) are almost identical to those
in Fig. 2(a) if the three common intercepts at
e"0 are forced to coincide. This implies that
contributions to the biased Brownian motion
FIG. 3. u(e) at di!erent values of k for a"0.5 and d"0.1.
As k increases, the critical e at which u changes sign from
negative to positive becomes smaller.
from the arm-projection and the kink asymmet-
ries are approximately additive in this two-state
model. As can be seen in Figs. 2(b) and 2(c), the
system also obeys the inversion symmetry prin-
ciple. That is, the inversion symmetry property of
the #ux is not a!ected by the value of a.

To examine the e!ect of the #uctuation rate
between the two potential states on the move-
ment of the particles, the transport #uxes u (e) are
calculated at three values of k for the case a"0.5
and d"0.1 and are plotted in Fig. 3. As shown in
the "gure, increasing the rate constant k de-
creases the interval in e over which u is negative.
This implies that if the transport #ux is negative
at small k, then it can change sign when the
frequency is increased (the direction reversal
(Chauwin et al., 1995; Chen et al., 1999)). This is
demonstrated clearly in Fig. 4 where u is plotted
FIG. 4. Transport #ux as a function of the #uctuation
frequency showing the direction-reversal phenomenon for
the case a"0.5. (a) d"0.1. Direction reversal occurs only
when e(3 (i.e., the kink is less than 0.3 <

0
). (b) d"0.25

(,a/2). Direction reversal is absent for any degree of the
kink.



FIG. 5. The phase diagram showing the sign (or direction)
of the velocity of the Brownian particle as a function of
the coordinates of the kinked point of a distorted ratchet in
the x}< coordinate system at di!erent k

1
and k

2
values. The

triangle in thin lines is the original undistorted ratchet.
Negative (!) velocity means that the Brownian particle is
moving toward the negative x (left) direction and vice versa.
In general, the kinked points can be divided into two
bounded regions with positive and negative velocities, re-
spectively. Increasing the rate constants (or frequency of the
#uctuation) decreases the area of the negative region. (a) The
a"0.5 case. The negative velocity region is bounded by the
arm of the original ratchet and the solid or the dashed curve
shown in the "gure and is divided into two symmetric
domains connected at (x, <)"(a/2, <

0
/2), the mid-point of

the original undistorted ratchet arm. (b) The a"0.48 case.
The negative velocity region for any given k is divided into
two disconnected domains which are symmetrical about the
point at (x, <)"(a/2, <

0
/2). (c) a"0.52. The negative velo-
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as a function of log k for a"0.5, two values of d,
and three values of e. For example, for the d"0.1
case, the #ux at e"1 is negative at small k. As
k increases, the #ux "rst decreases, reaches a
minimum, then increases and changes its sign,
reaches a maximum, and then decreases, as
shown in Fig. 4(a). On the other hand, if the #ux
is positive at small k, increasing the value of k will
only change the magnitude of the #ux, not the
sign, as shown in the e"3 curve in Fig. 4(a) and
in all curves in Fig. 4(b) for the d"0.25 case.

The results in Figs. 2 and 3 imply that the
coordinates of the kinked point (characterized by
the values of d and e) in the (x, <)-plane can be
grouped into positive- and negative-velocity re-
gions (or domains) as shown in Fig. 5. In general,
the negative-velocity domains are symmetric
with respect to the mid-point of the arm of the
original ratchet at (x, <)"(a/2, <

0
/2). The shapes

and the sizes of the domains depend on the fre-
quency of the #uctuation. As shown in Fig. 5, as
k increases, the area of negative u decreases. The
shape of the phase diagram also is greatly in-
#uenced by the value of a. When a is equal to 0.5,
one of the boundaries of the negative u domain is
always along the arm of the (unkinked) symmet-
ric ratchet, and the negative phase is divided into
two sub-domains that are joined at the center of
symmetry at (x, <)"(a/2, <

0
/2) [see Fig. 5(a)].

For a less than 0.5, the two negative u sub-
domains become disjoint [see Fig. 5(b)]. Finally,
for a greater than 0.5, the negative u domain
occurs as a single connected region [see Fig. 5(c)].
It is important to point out that, as shown in the
"gures, the value of k a!ects only the area and the
shape of each domain or sub-domain, but not
the number or the connectivity of the domain(s).
The phase diagrams in Fig. 5 are very useful in
determining whether or not a particular potential
will generate the direction-reversal phenomenon.
For example, the point indicated by an asterik in
Fig. 5(a) is located inside the negative phase for
k"1 and 10 (the border for this case is not
shown in the "gure), but is located outside that
for k"100. Thus, a particle in this potential will
move towards the left (negative u) at small k and
change its direction (u becomes positive) when
k becomes greater than 100.

We also carried out the calculations for the
case that k

1
is "xed at 0.01 (the same case as we
city region is connected. The inversion symmetry holds for
the entire region. ( ) k

1
"0.01; ( ) k

1
"k

2
.



FIG. 6. The #ux curves calculated for the two-state model
with the distorted potential shown in Fig. 1(c), in which the
left arm of the regular ratchet is replaced by the nonlinear
sinusoidal function, <(x)"<

0
[sin(nx/2a)]S. (a) a"0.5.

(b) a"0.7.
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did before (Chen et al., 1999). Direction reversal
(DR) was also found in this case. The phase
diagrams showing the coordinates of the kinked
points with negative velocities evaluated at some
values of k

2
are also shown in Fig. 5(a) and 5(c)

for a"0.5 and 0.52. When the dashed curves
(k

1
"0.01) are compared with the solid curves

(k
1
"k

2
) in Fig. 5(a) and 5(c), it is easy to see that,

for the same k
2
, reducing the value of k

1
de-

creases the area of the negative velocity region in
the phase diagram. However, the shapes of the
phase diagrams evaluated at di!erent a values for
this k

1
"0.01 case are very similar to those for

the k
1
"k

2
case. This implies that the existence of

DR in this two-state model is determined only by
the shape and the asymmetry of the kinked po-
tential, not by the frequency of the #uctuation.
Although the mechanism underlying the genera-
tion of DR is hard to get for the k

1
"k

2
case,

a qualitative explanation can be obtained for the
k
1
"0.01 case based on the same physical argu-

ments discussed before by Chen et al. (1999).
For Case II, the potential on the left half of the

ratchet is replaced by the nonlinear function
<(x)"<

0
[sin(nx/2a)]S where 0)x)a and

0(S)1. The potential becomes more distorted
as the value of S becomes smaller [see Fig. 1(c)].
In Fig. 6(a), the calculated transport #uxes for
a"0.5 are plotted as a function of S for
k"1, 10, and 100. As shown in the "gure, the
induced #ux is always positive and is indepen-
dent of the values of k and S. That is, no DR is
expected in this case. It is easy to show that
<(x)"<

0
(1![cos(nx/2a)]S ) and <(x)"<

0
[sin

(nx/2a)]S are polar symmetric with respect to
each other about the inversion point (x, <)"
(a/2, <

0
/2)"(0.25, <

0
/2). Thus, one would expect

the two functions to give the same transport #ux
if the &&inversion symmetry'' principle found for
the kinked case discussed above is applicable to
this case also. This indeed is correct; the cal-
culated transport curves for the cosine case are
identical to those in Fig. 6(a) for the same values
of k and S. In other words, the inversion sym-
metry principle seems to apply irrespective of
whether the potential is continuous or kinked.

The result that particle movement is always
biased to the right when the left arm of the
original symmetric ratchet is replaced by the
nonlinear sine function implies that this speci"c
nonlinearity in the left arm of the ratchet creates
a driving force for the particle to move toward
the right. As mentioned before, the arm-projec-
tion asymmetry can generate a driving force for
the particle to move toward the left if the right
arm-projection is shorter than the left one, i.e.,
when a'0.5. Thus, by adjusting the value of
S and a, the sign of the #ux can be varied. This is
indeed the case as one can see from Fig. 6(b) in
which the #ux at di!erent values of k is plotted as
a function of S for a"0.7. This result implies that
DR is possible when the projection on the x- axis
of the nonlinear sine function arm in Fig. 1(c) is
longer than that of the linear arm. The phase
diagram showing the regions of positive and
negative velocities of the particle on the (S, a)
plane as a function of k are shown in Fig. 7. With
this diagram, it is easy to determine whether



FIG. 7. The phase diagram showing the dividing line be-
tween the regions of positive and negative #uxes on the (S, a)
plane as a function of k.
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a particular nonlinear sine function ratchet is
capable of generating DR. For example, ratchets
with S"0.04 and a"0.8 will not generate DR if
k'1, while those with S"0.1 and a"0.8 will
generate DR between k"10 and 100 [compare
the positions of the two points indicated by stars
(*) in Fig. 7].

Discussion

The main purpose of this paper has been to
investigate the relationship between the local
asymmetry of the ratchets in a periodic potential
and the direction of movement of a Brownian
particle when the potential is switching on-and-
o! randomly between two potential states, one of
which is #at. We have found that in the absence
of any other asymmetries, distorting one arm of
the linear regular ratchet in the periodic potential
can create a driving force for the particle to
execute biased movement. The direction of the
biased movement depends on the type of distor-
tion. For example, if the distortion is made by
kinking one arm as shown in Fig. 1(b) (Case I),
the induced biased movement can be positive or
negative depending on the position (d) and the
degree (e) of the kink [see Fig. 2(a)]. On the other
hand, if one arm (of the symmetric regular ratch-
et) is replaced by the sinusoidal function shown in
Fig. 1(c) (Case II), then the direction of biased
movement of the particle is always from the left
to the right [see Fig. 6(a)]. Thus, in order to
generate DR, the ratchets may or may not re-
quire the arm-projection asymmetry in Case I, as
has been found in our calculations. In contrast,
the arm-projection asymmetry is de"nitely re-
quired in Case II in order for the system to
generate DR.

Systems exhibiting the direction reversal (DR)
phenomenon have been reported before by sev-
eral investigators. Kula et al. (1998) found that
DR could be obtained if the particle was sub-
jected to a non-equilibrium #uctuating force.
Millonas and Dykman (1994) discussed a station-
ary periodic potential in which the generation of
DR is induced by a Gaussian force noise with
a non-white power spectrum. Reimann and
Elston (1996) discussed the generation of DR in
a general periodic potential with non-Gaussian
dichotomous force noise. Bier and Astumian
(1996) showed that DR could be obtained in
a special #uctuating three-state ratchet model.
Chauwin et al. (1995) were the "rst to "nd that
the direction reversal could be obtained in the
two-state model in Fig. 1(a) if the long arm of the
ratchet is kinked vertically at the end [corres-
ponding to d"0 and a'0.5 in Fig. 1(b)].
Recently, we showed that the existence of the
frequency-dependent DR in the two-state model
of Chauwin et al. does not depend on whether a is
larger than, equal to, or smaller than 0.5 (Chen
et al., 1999). Here we have shown that DR can be
achieved in this system even when the value of
d in Fig. 1(b) is not equal to zero (that is, the kink
is not restricted to the end of the arm).

The phase diagrams showing the exact rela-
tionship between the asymmetry parameters of
the potential and the sign of the #ux are given in
Fig. 5 for Case I and in Fig. 7 for Case II. These
diagrams can be used to determine whether
a particular ratchet geometry will generate the
direction reversal phenomenon and should be
useful in designing the apparatus for particle sep-
aration based on the two-state system described
in this paper.

One unexpected result of this study is the "nd-
ing that the transport #uxes of two distorted
nonlinear ratchet potentials are equal if the two
distortions have polar symmetry about the mid-
point of the arm of the original regular ratchet.



FIG. 8. (a) Equivalent distorted ratchet potentials that produce equal #uxes. The potential de"ned by the solid lines is said
to be equivalent to that de"ned by the dotted lines in each "gure because they are symmetrical to each other about the
mid-point of both arms of the original regular ratchet (see text). (b) Relationship between the sign of the #ux (or the direction
of the movement) and the inversion operations applied to the entire periodic potential. The inversion operations a!ect only
the sign of the #ux, not the magnitude of the #ux. Note that the last potential diagram is identical to the "rst one with the
dotted line in (a).
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That is, two di!erent distorted ratchet potentials
can be considered to be equivalent with respect to
transport #ux if one distortion is the &&inverted
image'' of the other about the mid-point of the
arm of the undistorted ratchet. This &&inversion
symmetry principle'' also holds when distortions
are applied to both arms. For example, the po-
tential given by the solid lines in each "gure in
Fig. 8(a) is equivalent to that given by the dashed
lines, and therefore, both potentials will produce
identical #uxes. This principle is very general in
that the distortion can be of any shape. The
correctness of the principle can be explained
by the following simple argument. As shown
in Fig. 8(b), let us carry out two inversion
operations on the periodic non-#at potential: (1)
change the sign of the potential, < (x)P!<(x);
and (2) change the sign of the potential axis,
xP!x. It is obvious that each operation will
change the sign, but not the magnitude, of the
#ux. As a result, the #ux will remain invariant
after the two operations. Now, if one examines
the shape of the potential after the two opera-
tions, then one will "nd that the resultant poten-
tial is identical to the &&inverted'' potential of the
original ratchet potential [compare the last dia-
gram in Fig. 8(b) with the "rst one in Fig. 8(a)
given by the dashed lines]. This proves that
equivalent distorted ratchet potentials with in-
version symmetry will produce equal #uxes in
a two-state model. The same argument can be
applied to cases where both arms of the ratchet
are distorted.

One author (RMM) wishes to acknowledge
research funding from the Natural Sciences and En-
gineering Research Council of Canada. Also, he
thanks Drs Alwyn Scott, Mads Soerensen, and Peter
Christiansen of the Department of Mathematical
Modelling, Technical University of Denmark for their
hospitality and support during part of this research.

REFERENCES

ASTUMIAN, R. D. (1997). Thermodynamics and kinetics of
Brownian motor. Science 276, 917}922.

ASTUMIAN, R. D. & BIER, M. (1994). Fluctuation driven
ratchets: molecular motors. Phys. Rev. ¸ett. 72,
1766}1769.

ASTUMIAN, R. D. & BIER, M. (1996). Mechanochemical
coupling of the motion of molecular motors to ATP
hydrolysis. Biophys. J. 70, 637}653.

BIER, M. & ASTUMIAN, R. D. (1996). Biasing Brownian
motion in di!erent directions in a 3-state #uctuating po-
tential and an application for the separation of small
particles. Phys. Rev. ¸ett. 76, 4277}4280.

CHAUWIN, J.-F., AJDARI, A. & PROST, J. (1995). Current
reversal in asymmetric pumping. Europhys. ¸ett. 32,
373}378.

CHEN, Y. (1997). Asymmetric cycling and biased movement
of Brownian particles in Fluctuating symmetric potentials.
Phys. Rev. ¸ett. 79, 3117}3120.

CHEN, Y., YAN, B. & MIURA, R. M. (1999). Asymmetry and
direction reversal in #uctuation-induced biased Brownian
motion. Phys. Rev. E. 60, 3771}3775.



150 B. YAN E¹ A¸.
JULICHER, F., AJDARI, A. & PROST, J. (1997). Modeling
molecular motors. Rev. Mod. Phys. 69, 1269}1281.

KULA, J., CZERNIK, T. & LUCZKA, J. (1998). Brownian
ratchets: transport controlled by thermal noise. Phys. Rev.
¸ett. 80, 1377}1380.

MILLONAS, M. M. & DYKMAN, M. I. (1994). Transport and
current reversal in stochastically driven ratchets. Phys.
¸ett. A. 185, 65}69.

PROST, J., CHAUWIN, J.-F., PELITI, L. & AJDARI, A. (1994).
Asymmetric pumping of particles. Phys. Rev. ¸ett. 72,
2652}2655.
REIMANN, P. & ELSTON, T. C. (1996). Krammers rate for
thermal plus dichotomous noise applied to ratchets. Phys.
Rev. ¸ett. 77, 5328}5331.

RISKEN, H. (1989). ¹he Fokker-Planck Equations. Berlin:
Springer-Verlag.

ROUSSELET, J., SALOME, L., AJDARI, A. & PROST, J.
(1994). Directional motion of Brownian particles
induced by a periodic asymmetric potential. Nature 370,
446}448.

ZHOU, H.-X. & CHEN, Y. (1996). Chemically driven motility
of Brownian particles. Phys. Rev. ¸ett. 77, 194}197.


	Introduction
	FIGURE 1

	Model and Mathematical Analysis
	Results
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7

	Discussion
	FIGURE 8

	REFERENCES

